Multi-objective optimisation of relevance vector machines: selecting sparse features for face verification ICML/UAI/COLT 2008 Workshop on Sparse Optimisation and Variable Selection
نویسندگان
چکیده
The relevance vector machine (RVM) (Tipping, 2001) encapsulates a sparse probabilistic model for machine learning tasks. Like support vector machines, use of the kernel trick allows modelling in high dimensional feature spaces to be achieved at low computational cost. However, sparsity is controlled not just by the automatic relevance determination (ARD) prior but also by the choice of basis functions or, equivalently, kernels. In particular severe over-fitting occurs when multi-resolution kernels, such as wavelets, are employed. Also, the lack of control over the weight variances means that overfitting can occur due to the greediness of feature selection. For regression this has been combated through the use of a smoothness prior (Schmolck and Everson, 2007) but the methodology does not carry over to classification problems. Additionally, it is often unclear what the costs of misclassification are and commonly one wants to assess performance over a range of misclassification costs.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملIntrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-k...
متن کاملMulti-objective Model Selection for Support Vector Machines
In this article, model selection for support vector machines is viewed as a multi-objective optimization problem, where model complexity and training accuracy define two conflicting objectives. Different optimization criteria are evaluated: Split modified radius margin bounds, which allow for comparing existing model selection criteria, and the training error in conjunction with the number of s...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کامل